АО «ОЗНА - Измерительные системы»

УСТАНОВКИ ИЗМЕРИТЕЛЬНЫЕ «ОЗНА-МАССОМЕР» СИСТЕМЫ ИЗМЕРЕНИЙ КОЛИЧЕСТВА НЕФТИ И ГАЗА «ОЗНА-ИС2» КОМПЛЕКС ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ IS.MR.021

РУКОВОДСТВО ПО УСТАНОВКЕ

приложение 63

к документу

РУКОВОДСТВО ПРОГРАММИСТА

RU.ИС.00021-001 33 04-1

Листов 37

Мыв. И подп. и дата Взам. имв. И Мив. И дубл. Подп. и дата

2023

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 Требования к рабочему месту	
2 Установка ПО на БИОИ	
2.1 Подготовка флеш-карты microSD	6
2.2 Установка образа в процессорный модуль K15.CPU.LX1	8
2.3 Установка программного обеспечения	
2.4 Обновление прошивки модулей К15	
2.5 Выставление адреса модуля ввода-вывода К15	
3 Проверка работоспособности каналов DI, DO, AI, RS485	23
3.1 Проверка работоспособности каналов DI	23
3.2 Проверка работоспособности каналов DO	
3.3 Проверка работоспособности каналов модуля К15.АІ	
3.4 Проверка работоспособности каналов CI	
3.5 Проверка работоспособности каналов RS485	
4 Определение IP-адреса/серийного номера ПЛК	
5 Скачивание архивных файлов на USB носитель	
6 Лист регистрации изменений	

ВВЕДЕНИЕ

Данный документ является частью описания комплекса программного обеспечения (далее — комплекс ПО) блоков измерения и обработки информации (далее БИОИ), выполненных на базе процессорного модуля К15.СРU.LX1 (ПМ LX1) и отдельных модулей ввода-вывода К15, использующихся в составе установок измерительных «ОЗНА-МАССОМЕР», систем измерений количества нефти и газа «ОЗНА-ИС2» производства АО «ОЗНА –Измерительные системы» (далее ИУ).

Документ является Приложением Б3 к Руководству Программиста RU.ИС.00021-011 33 01. Документ содержит руководство по установке компонентов комплекса ПО ИУ.

Документ предназначен в качестве руководства специалистам, выполняющим пуско-наладку, ремонт и эксплуатацию ИУ.

1 Требования к рабочему месту.

Для выполнения работ, требуется:

- Компьютер(ПК) с ОС Windows 7 и старше
- Флеш-накопитель (microSD) объёмом максимум 8 ГБ
- Картридер для подключение microSD к ПК
- Программатор ST-Link.
- Файлы. Внутрикорпоративная ссылка на файлы. Скачивайте последние обновления.

Таблица 1 – Список файлов

№	Название файла	Описание	Ссылки		
1	DriverAssitant_v4.91.zip	Драйвер для связи с ПЛК	<u>Скачать</u>		
2	RKDevTool_Release_v2.86.zip	Установщик образа системы на ПЛК	Скачать		
3	EC3399ProC_preemt_xfce_ DDM-MYYYY.zip	Образ системы для ПЛК	<u>Скачать</u>		
4	install_tools_DDMMYYYY.zip	ПО «ОЗНА-МАССОМЕР»\ «ОЗНА-ИС2»	Внутрикорпоративная ссылка на файлы		
5	STM32 ST-LINK Utility v4.3.0 setup.exe	ПО STM32 ST-Link Utility для обновления прошивки модулей	<u>Скачать</u>		
6	Прошивки к15.7z	Комплект прошивок для модулей К15	Внутрикорпоративная ссылка на файлы		
7	udp_broadcast_client.exe	Утилита для определения IP-адреса ПЛК	Внутрикорпоративная ссылка на файлы		
8	LX.zip	Образ для ПМ LX	Скачать LX.zip		
9	SDDiskTool_v1.7.zip	Утилита для подготовки microSD-карты	<u>Скачать</u> SDDiskTool_v1.7.zip		

2 Установка ПО на БИОИ

2.1 Подготовка флеш-карты microSD.

Порядок записи образа на microSD:

- Подключите microSD через картридер к ПК.
- Скачать SDDiskTools_vXXX.zip. Сохраните архив в месте, чтобы в пути были только латинские символы.

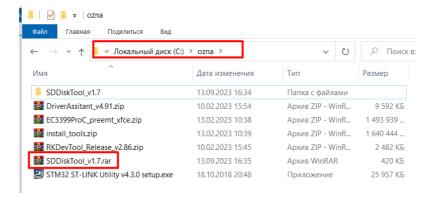


Рисунок 1 – Расположите архив в корне

Скачайте образ для ПМ LX.

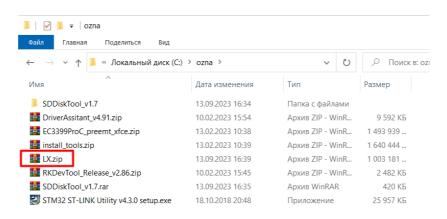


Рисунок 2 – Распакуйте образ для LX

- Распакуйте архивы, нажав правую кнопку мыши.
- Зайдите в распакованную папку и запустите SDDiskTools.exe

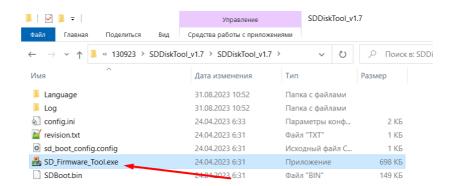


Рисунок 3 – Запустите SDDiskTool

• Выберите образ кнопкой *Firmware* и нажмите *Create*.

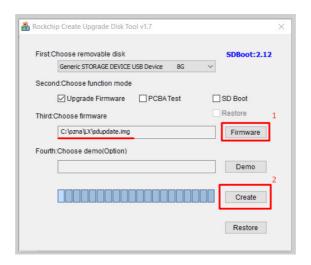


Рисунок 4 -

• Подождите несколько минут.

Рисунок 5 – Дождитесь процесса загрузки

• Нажмите Ок!

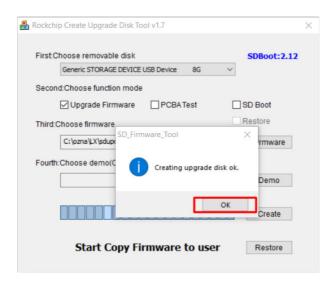


Рисунок 6 – Нажмите ОК!

• Перейдите к следующий раздел.

2.2 Установка образа в процессорный модуль K15.CPU.LX1

Внимание! Необходимо обеспечить бесперебойное питание **ПМ LX** во время установки образа.

Порядок действий по установке образа на процессорный модуль K15.CPU.LX1 (ПМ LX1):

Отключите от питания ПМ LX1.

Рисунок 7 – Процессорный модуль K15.CPU.LX1 на DIN-рейке

• Установите microSD в ПМ LX1 до щелчка.

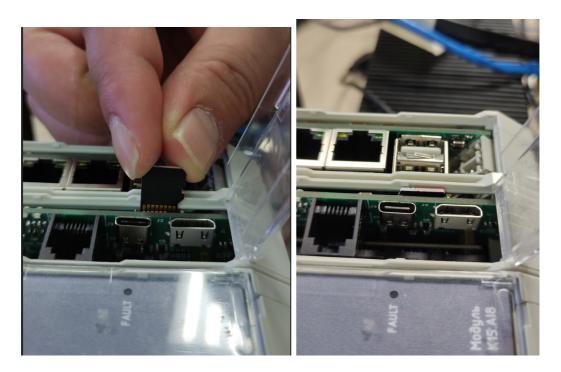


Рисунок 8 – Установка microSD в ПМ LX1

• Подайте питание на ПМ LX1.

Рисунок 9 – Питание подали на ПМ LX1

• Откройте заглушку отверткой и нажмите на кнопку Reset. После этого начнётся процесс загрузки образа на ПМ LX1.

Рисунок 10 – Кнопка Reset процессорного модуля K15.CPU.LX1

• На панели должно отобразиться сообщение...

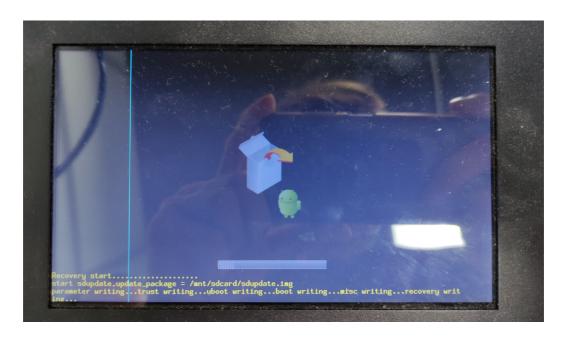


Рисунок 11 – Отображение на панели процесса загрузки образа

• Дождитесь сообщение «Please remove SD ...» - это означает, что образ установлен - и удалите карту microSD.

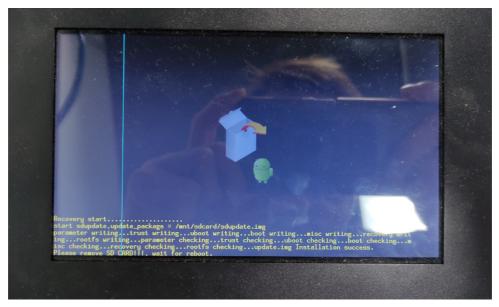


Рисунок 12 – Сообщение об удалении SD карты

• После загрузки образа на рабочем столе появится окно с сетевыми настройками (IP адрес, серийный номер) – их необходимо сфотографировать и сообщить разработчикам в случае возникновения проблем в следующих шагах данной инструкции.

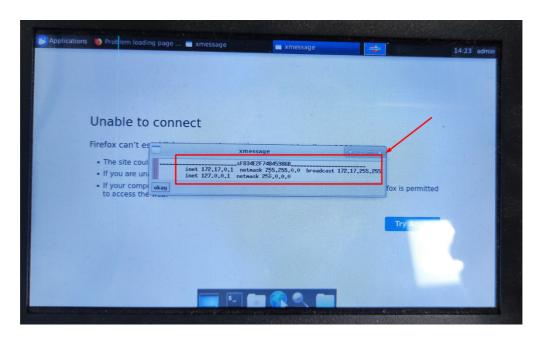


Рисунок 13 – Отображение сетевых настроек ПМ LX!

Нажмите «okay», проект продолжит загружаться.

• Дождитесь появления на дисплее окна с данным сообщением «Попытка соединения ...»

Внимание! Подождите в этом режиме как минимум 2 минуты для того, чтобы система настроила все необходимые интерфейсы и только потом продолжите следовать инструкции.

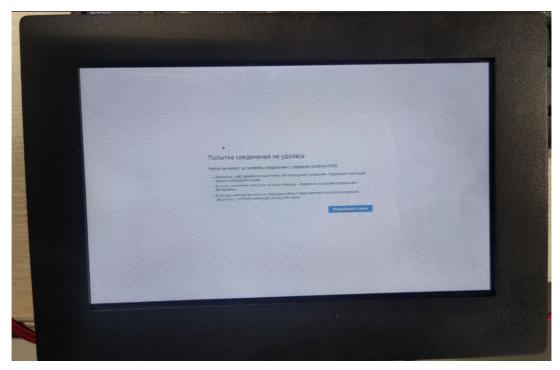


Рисунок 14 – Дождитесь настройки интерфейсов при первом запуске

• Далее перейдите к пункту «Установка комплекса ПО «ОЗНА-МАССО-МЕР»\ «ОЗНА-ИС2».

2.3 Установка программного обеспечения

Для установки скачайте архив с ПО на компьютер, пройдя по ссылке «https://tsp.ozna.digital:45000/zip/install tools.zip».

- Установите флешку в компьютер.
- Отформатируйте флешку, выбрав файловую систему FAT 32

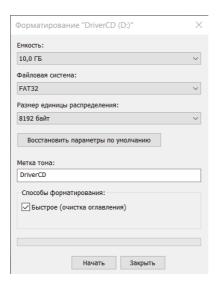


Рисунок 15 – Окно для форматирования флешки. Запущено в ОС Windows

- Распакуйте скачанный архив в какую-либо папку на компьютере.
- Скопируйте папку оzna с её содержимым в корень флешки.

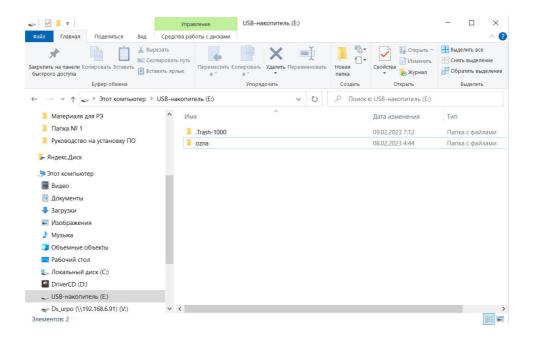


Рисунок 16- Папка оzna на флешки

• Извлеките флешку из компьютера и установите в USB-порт ПЛК.



Рисунок 17 – Флешка установлена в ПЛК

• Перезагрузите ПЛК путём отключения и подключения кабеля питания. На дисплее должно появиться в правом верхнем углу сообщение «Идёт_процесс_установки_ПО». Установка идёт, примерно, 15-20 минут.

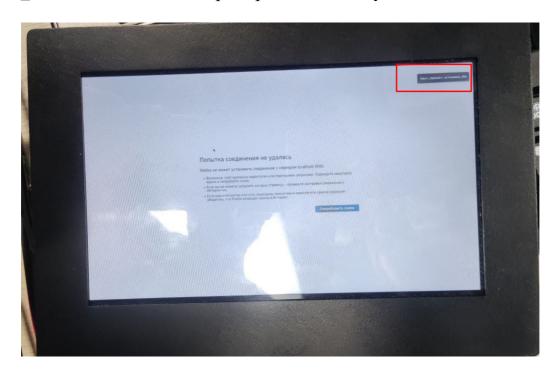


Рисунок 18 – Снимок панели в процессе установки ПО

Примечание: Если после перезагрузки в течение 2 минут экран остаётся черным, то последовательно отключите и подайте питание на дисплей затем на ПЛК.

• По окончанию установки на дисплее отобразиться сообщение «Закончился процесс установки ПО»

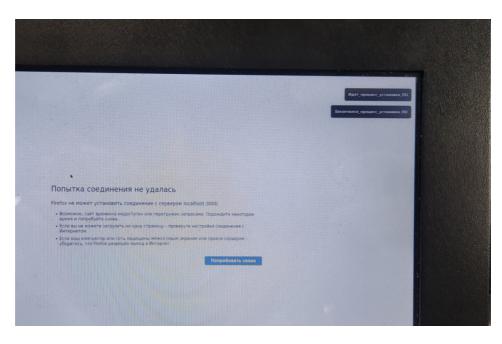


Рисунок 19 – Снимок панели с сообщением об окончании установки ПО

• Для отображения мнемосхемы на дисплее нажмите на кнопку «Попробовать снова». При успешном соединении должна отобразиться мнемосхема. Внимание! При первом запуске данные начнут отображаться, примерно, через 3-5 минут после загрузки.

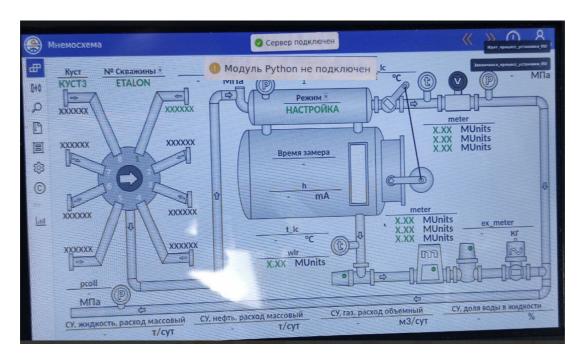


Рисунок 20 – Снимок панели с установленным проектом ПО

• После появления мнемосхемы появится сообщение «Сервер подключен» и «Модуль Python не подключён».

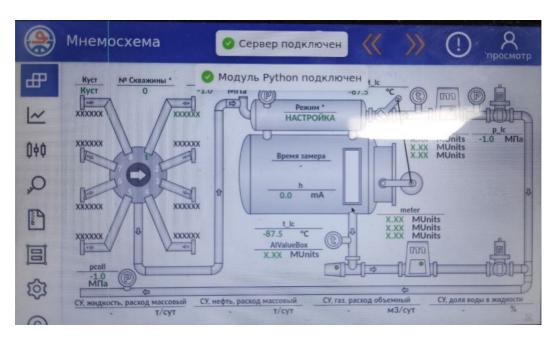


Рисунок 21 – Сообщение о готовности ПО к работе

• Дождитесь сообщения «Сервер подключен» и «Модуль Python подключён». Программное обеспечение ПЛК готово к работе! Необходимо подключить модули ввода/вывода.

2.4 Обновление прошивки модулей К15

Для взаимодействия модулей ввода-вывода K15 со ПМ необходимо обновить прошивки модулей.

Рисунок 22 – Общий вид соединения компьютера с модулем ввода-вывода

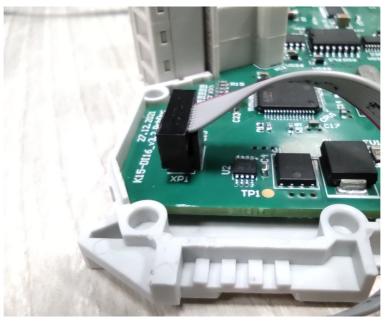


Рисунок 23 — Разъём XP1 с установленным соединительным кабелем

- Подключите программатор ST-Link к компьютеру. Соединительный кабель подключите к разъёму XP1 модуля. На модуле должны засветиться диоды.
- Запустите ПО STM32 ST-Link Utility на компьютере.

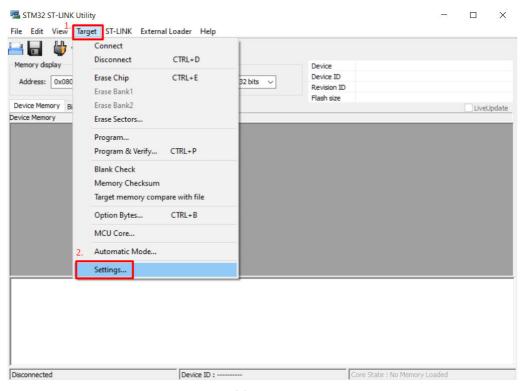


Рисунок 24 – Переход в настройки

• Перейдите в Target->Settings и установите настройки в соответствии с рисунком ниже.

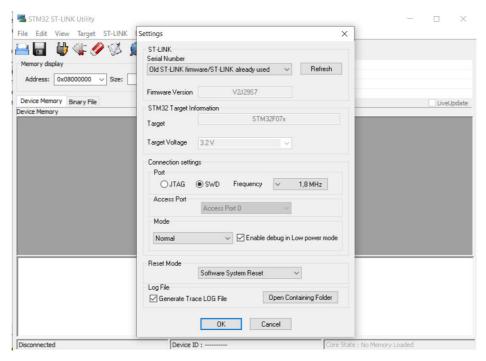


Рисунок 25 – Настройте программу в соответствии со скриншотом

• Перейдите в Target->Program ..., выбрите BIN-файл загрузчик «K15_Modules boot.bin» - он является общим для всех типов модулей.

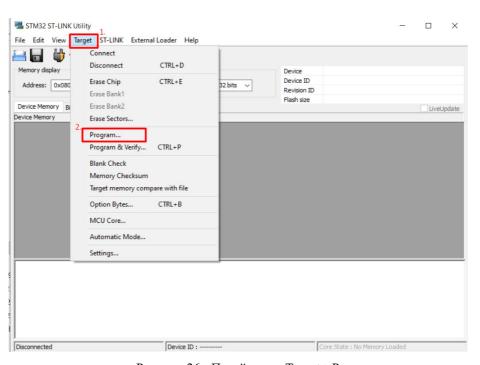


Рисунок 26 - Перейдите в Target->Program

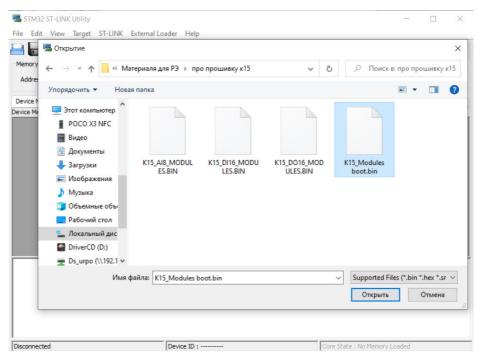


Рисунок 27 – Выбор файла для обновления загрузчика модуля

• Установите стартовый адрес 0x08000000. Это необходимо делать после выбора файла, так как стартовый адрес сбрасывается после выбора файла.

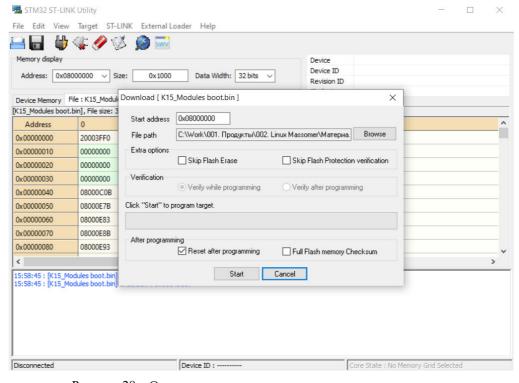


Рисунок 28 — Окно для загрузки прошивки на модуль с указанием адреса

STM32 ST-LINK Utility File Edit View Target ST-LINK External Loader Help 🖴 🖥 🖐 🥨 🔗 🚳 📟 Memory display Device ID Address: 0x 0x0EB2 Data Width: 32 bits V Flash size Device Memory @ 0x08000000 : File : K15_Modules boot.bin LiveUpdate Target memory, Address range: [0x08000000 0x08000EB2] 4 Address 0 8 ASCII 08000E4D 08000ADB 08000C93 р?. М...Ы..."... 0x08000000 20003FF0 0x08000010 00000000 00000000 00000000 00000000 0x08000020 00000000 00000000 00000000 08000BDB 0x08000030 00000000 00000000 08000BFB 08000C0Dы+...7...y... 08000C0B 08000E2B 08000E37 08000E79 0x08000040 0x08000050 08000E7B 08000E7D 08000E7F 08000F81 0x08000060 «...Ќ...Џ...'... 0x08000070 08000E8B 08000E8D 08000E8F 08000E91 08000E95 0x08000080 08000E93 08000E97 08000E99 15:58:45: [K15_Modules boot.bin] opened successfully. 15:58:45: [K15_Modules boot.bin] checksum: 0x00049357 16:04:10: Memory programmed in 0s and 344ms.

Device ID: -

• Нажмите кнопку «Start» и дождитесь завершения обновления.

Рисунок 29 – Скрин успешной загрузки прошивки

• Далее обновляем прошивку в соответствии с типом модуля. Перейдите в Target->Program ..., выберите файл обновления соответствующего модуля с расширением .bin

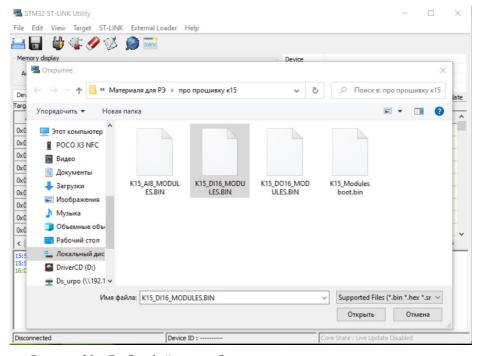


Рисунок 30 – Выбор файла для обновления прошивки в соответствии с типом модуля

Disconnected

• Установите стартовый адрес 0x08001000 (это необходимо делать после выбора файла, так как стартовый адрес сбрасывается после выбора файла).

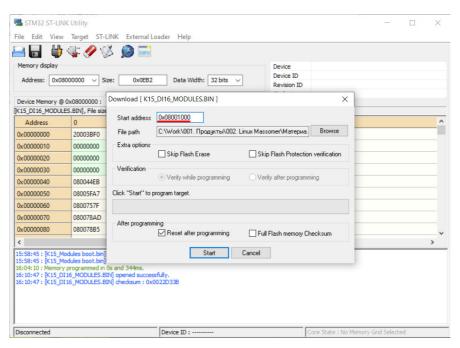


Рисунок 31 - Окно для загрузки прошивки на модуль с указанием адреса

• Нажмите кнопку «Start» и дождитесь окончания обновления.

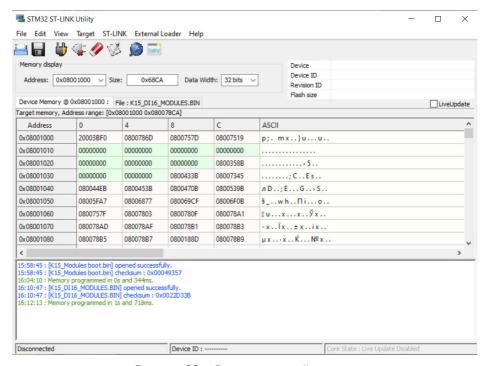


Рисунок 32 – Скрин успешной загрузки прошивки

• Выставить адрес модуля в соответствии номера блока в КД, используя пункт «Выставление адреса модуля ввода-вывода К15»

2.5 Выставление адреса модуля ввода-вывода К15

Для выставления молуля используются dip переключатели. Установите адреса в соответсвии с инструкцией, которая нанесены с боковой части модуляю

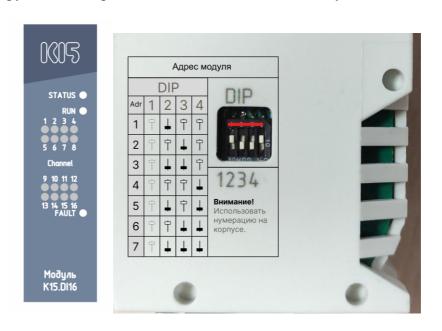


Рисунок 33 – Лицевой вид модуля и схема выставления адреса модуля ввода-вывода

В зависимости от модели модуля положение dip-переключателей может менятмся.

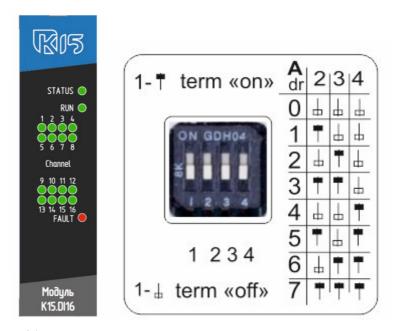


Рисунок 34 – Лицевой вид модуля и схема выставления адреса модуля ввода-вывода

3 Проверка работоспособности каналов DI, DO, AI, RS485

Для проверки каналов необходимо в окне *Метрология* выставит режим ПО-ВЕРКА.

Рисунок 35 – Расположение переключения режимов РАБОТА и ПОВЕРКА

3.1 Проверка работоспособности каналов DI

Каналы DI в комплексе представлены модулем К15.DI.

Для проверки каналов DI имитируем сигналы и визуально фиксируем индикацию на модуле и в окне метрологии, канал DI.

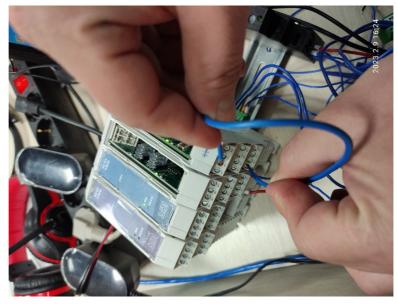


Рисунок 36 – Руки инженера, который имитирует входной сигнал на модуле DI

Для имитации сигналов используйте схемы модулей DI16 и DI4 Namur, приведённые ниже.

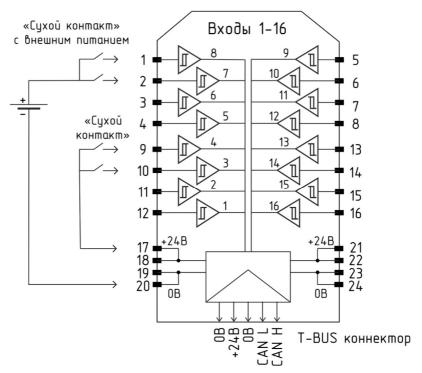


Рисунок 37 – Схема модуля DI16

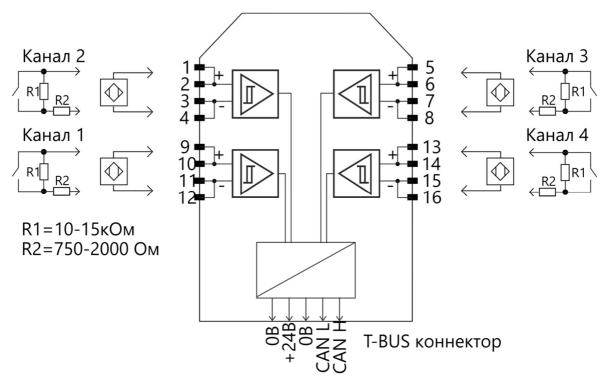


Рисунок 38 – Схема модуля DI4 Namur

Рисунок 39 – Фиксируем индукцию канала DI в окне Метрологии

3.2 Проверка работоспособности каналов DO

Каналы DO в комплексе представлены модулем К15.DO.

Войдите в окно *Метрологии*, найдите каналы DO и нажмите кнопку ТЕСТ. Должно начаться последовательное зажигание сигналов на мнемосхеме, а также на модуле K15.DO.

Рисунок 40 – Окно метрологии, тест каналов DO

Для проверки сигналов используйте ниже приведенную схему модуля DO16.

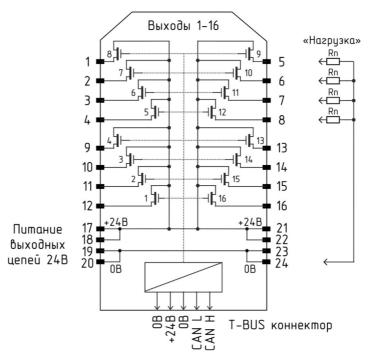


Рисунок 41 – Схема модуля DO16

Проверьте индикацию на модуле. Она должна загораться в соответствии с каналом.

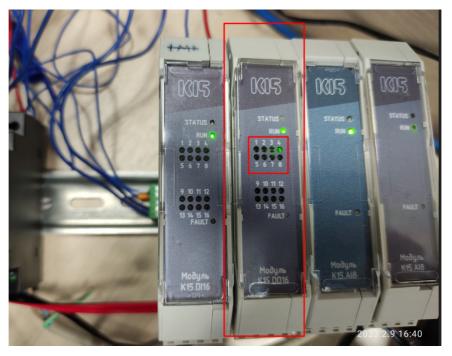


Рисунок 42 – Модуль DO, индикация на модуле

3.3 Проверка работоспособности каналов модуля К15.АІ

Каналы AI в комплексе представлены модулем К15.AI. Войдите в окно *Метрологии*, откройте каналы AI. В калибраторе выставляем диапазон от 4 до 20 мА.

Рисунок 43 – Имитация входного токового сигнала, модуль AI

При проверке и стабильного сигнала затяните клеммы на модуле. Ниже приведена схема модуля AI8 и AI16.

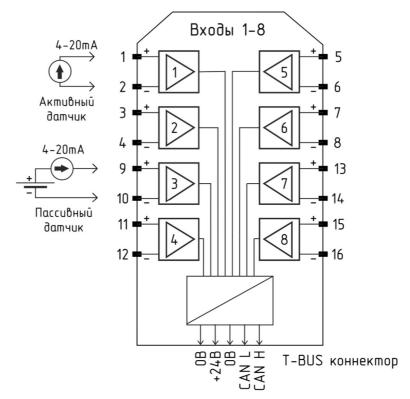


Рисунок 44 – Схема модуля АІ8

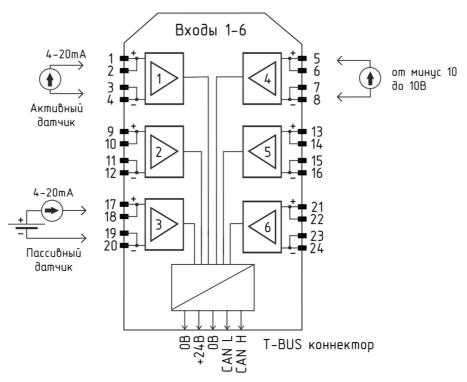


Рисунок 45 – Схема модуля AI16

Имитируя калибратором токовый сигнал, фиксируем в окне Метрологии номер канала и значение.

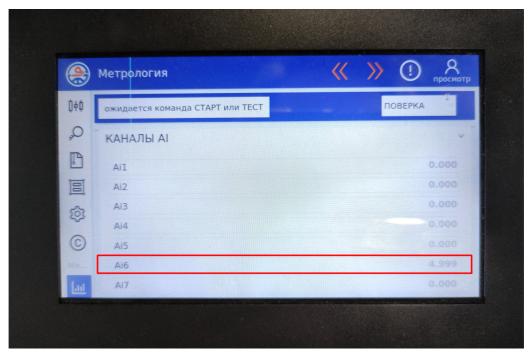


Рисунок 46 – Окно Метрологии, канал AI8, значение 4.999 мA

3.4 Проверка работоспособности каналов СІ

Каналы CI в комплексе расположены на каналах DI13(CI13) и DI14(CI14) модуля K15.DI.16.

В разработке

3.5 Проверка работоспособности каналов RS485

Канал RS485 в комплексе расположены на ПМ.

В разработке

4 Определение IP-адреса/серийного номера ПЛК.

- 1. Убедитесь, что Ваша учётная запись с правами администратора. Если нет, то обратитесь к своему системному администратору.
- 2. Скачайте на ноутбук/ПК программу **udp** broadcast client.exe по ссылке выше.
- 3. Создадим правило для входящих подключений на ноутбуке/ПК:

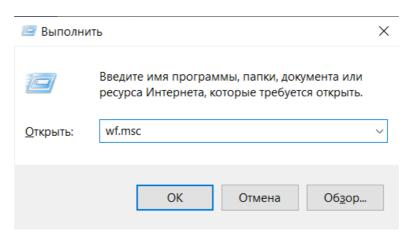


Рисунок 47 – Окно для ввода команды wf.msc

- Нажиме кнопки win+R для вызова окна «Выполнить».
- Введите команду **wf.msc** и нажмите «ОК» или «**ENTER**».

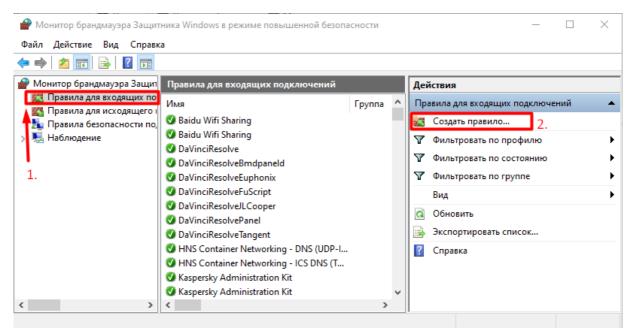


Рисунок 48 – Создание правила

- Откроется окно *«Монитор безопасности брандмауэра Защитник Windows в режиме повышенной безопасности»*
- Перейдите в «Правила входящих подключений», нажмите «Создать правило».

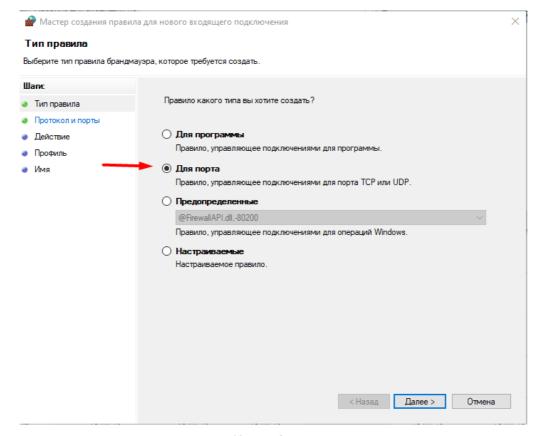


Рисунок 49 – Выбираем «Для порта»

• В открывшемся окне выберите «Для порта» и нажмите «Далее»

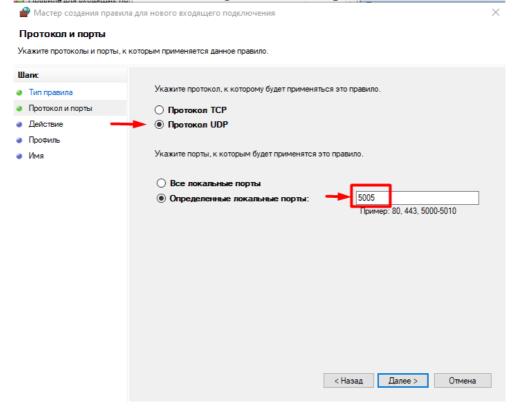


Рисунок 50 – Выбираем **UDP** и порт указываем **5005**

• Выбираем «протокол UDP» и в поле «Определенные локальные порты:» указываем порт 5005 и нажимаем «Далее»

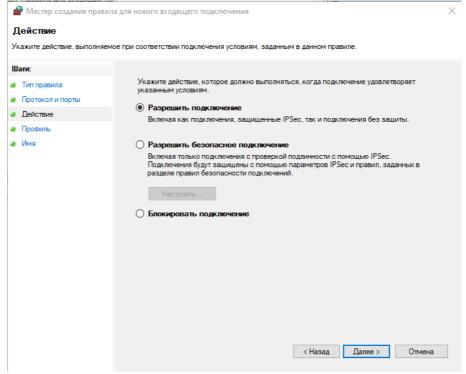


Рисунок 51 – Выбираем Разрешить подключение

• Выбираем «Разрешить подключение» и нажимаем «Далее»

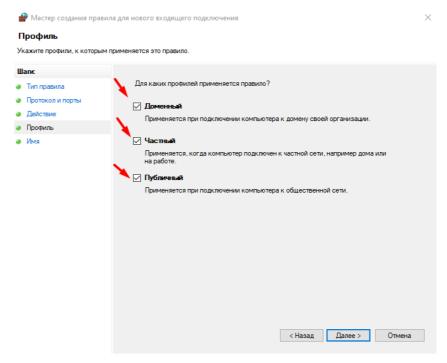


Рисунок 52 – Ставим 3 галочки

• В следующем окне ставим все три галочки и нажимаем «Далее»

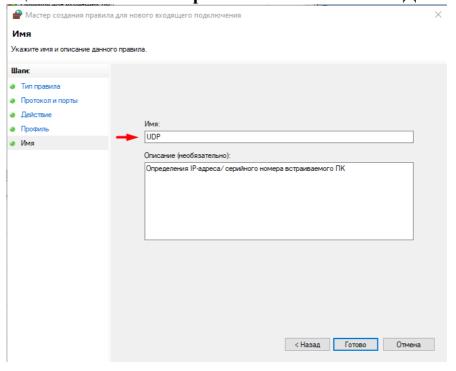


Рисунок 53 – Задаём имя для правила

- Задаем правилу имя «**UDP**» и нажимаем «**Готово**».
- **4.** Подключите ваш ноутбук/ПК к локальной сети, к которой подключен ПМ LX.

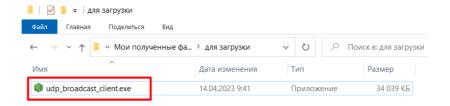


Рисунок 54 – Запуск программы

5. Запускаем скачанную ранее программу udp broadcast client.exe.

```
© C:\Users\Gibadullin.SF\Documents\Мои полученные файлы\для з... — Х

server listening 0.0.0.0:5005

server got: 192.168.24.31,is_mr_021_dev from 192.168.24.31:35338

server got: 192.168.24.31,is_mr_021_dev from 192.168.24.31:52094

server got: 192.168.24.31,is_mr_021_dev from 192.168.24.31:50200
```

Рисунок 55 – Окно программы с отображением ІР-адреса ПЛК

- **6.** Откроется окно терминала, в котором каждые 10 сек. будет отображаться информация о ПЛК, подключенного в сеть.
- 7. При необходимости полученные данные сфотографировать и отправить разработчикам.

5 Скачивание архивных файлов на USB носитель.

Для использования данной функции должна быть установлена утилита copy2falsh.

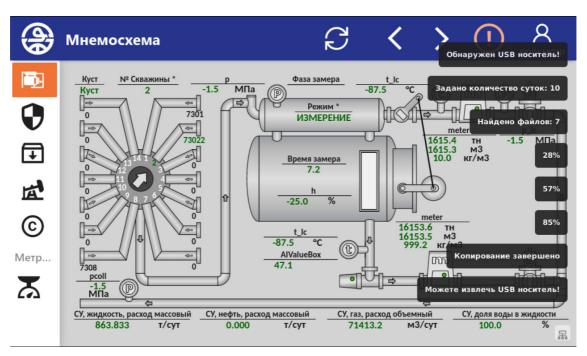


Рисунок 56 – Сообщения на панели оператора при подключении USB-носителя

Последовательность действий для скачивания архивов:

- Установите USB-носитель в соответствующий порт.
- Дождитесь разрешения на извлечение USB-накопителя.

Перечень уведомлений:

'Обнаружен USB носитель!' - в течении 10-20 секунд после подключения USB носителя;

'Задано количество суток: 10' - фильтрация файлов за определённое количество дней;

'Найдено файлов: 14' - количество файлов готовых к копированию за указанное количество суток;

'Не найдено файлов' - в случае отсутствия файлов за указанное количество суток;

'скопировано процентов N%' - ход копирования, уведомление через каждые 20% скопированных файлов;

'Копирование завершено' - процесс копирования завершен;

'Можете извлечь USB носитель!' - USB носитель размонтирован и готов для безопасного извлечения;

'Возникла ошибка!' - при возникновении ошибки (следует обратиться в техподдержку);

'Ошибка: недостаточно места!' - свободное место на USB носителе недостаточно для копирования очередного файла;

'Копирование прекращено!' - не удалось скопировать все файлы на USB носитель из-за ошибки.

6 Обновление программного обеспечения «ОЗНА-МАССО-МЕР»/«ОЗНА-ИС2»

1. Важно! Отформатируйте USB-флешку в файловою систему Fat32!

Рисунок 57 – Форматирование в FAT32

- 2. Скачайте архив по ссылке типа https://tsp.ozna.digital:44300/zip/sXXXXXXXXXXXXXXXXXXXXX.zip, которую передаст вам разработчик.
- 3. Распакуйте на USB-флешку загруженный архив. Это может занять около 15 минут. В корне флешки должна находиться папка *озна*.

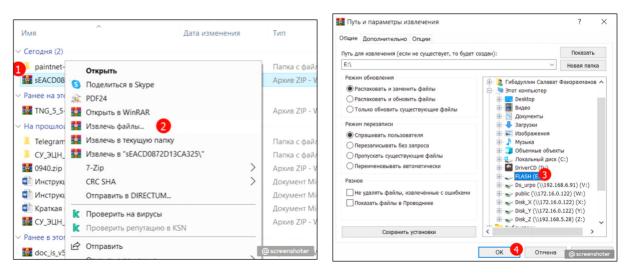


Рисунок 58 – Последовательность действий для разархивирования

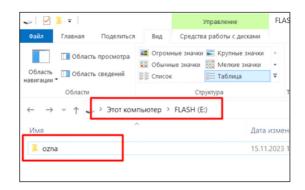


Рисунок 59 – Результат распаковки

4. Вставите флешку в контроллер LX и отключите- включите питание контроллера.

Рисунок 60 - Установленная флешка

5. После включения контроллера должно появиться сообщение на панели «Идёт_процесс_установки_ПО». Это займёт примерно 15 минут. Дождитесь сообщения «Закончился_процесс_установки_ПО»

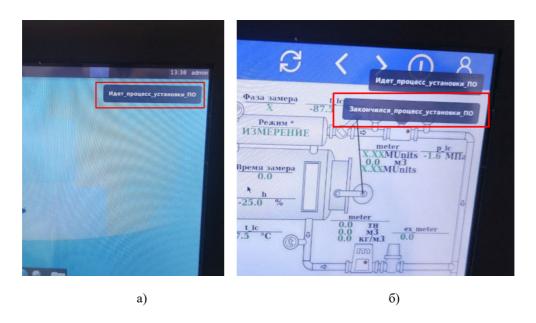


Рисунок 61 – а) – начало установки, б) – завершение установки

- 6. Для закрытия сообщений коснитесь (кликните) по ним.
- 7. Извлеките флешку из контроллера. Установите флешку в ПК и отправьте разработчикам логи из папки *озна*. Они появляются после установки ПО.

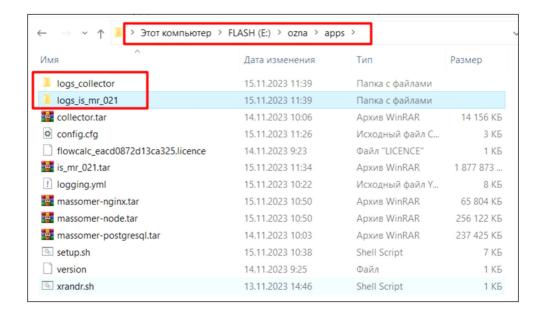


Рисунок 62 – Путь к папкам логов

8. Перезагрузите контроллер отключив-включив питание.

7 Лист регистрации изменений

	Номера листов (страниц)								
№пп	Изме-	заме-	но-	ан-	Всего	Номер	Входящий № и дата	Подпись	Дата
изм.	нен-	нен-	вых	нули-	листов	доку-	сопроводительного		
	ных	ных		po-	(стр)	мента	документа		
				ван-					
				ных					