<table>
<thead>
<tr>
<th>CONTENTS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEO MESSAGE 4 PAGE</td>
</tr>
<tr>
<td>ABOUT THE COMPANY 6 PAGE</td>
</tr>
<tr>
<td>MANAGEMENT STRUCTURE 8 PAGE</td>
</tr>
<tr>
<td>QUALITY MANAGEMENT SYSTEM 10 PAGE</td>
</tr>
<tr>
<td>CARE OF ENVIRONMENT 12 PAGE</td>
</tr>
<tr>
<td>SAFETY 14 PAGE</td>
</tr>
<tr>
<td>SOCIAL RESPONSIBILITY 15 PAGE</td>
</tr>
<tr>
<td>OUR PRODUCTS 18 PAGE</td>
</tr>
<tr>
<td>INNOVATIONS 38 PAGE</td>
</tr>
<tr>
<td>GEOGRAPHICAL PRESENCE 40 PAGE</td>
</tr>
<tr>
<td>MAJOR PROJECTS 42 PAGE</td>
</tr>
<tr>
<td>PEOPLE – THE HEART OF OZNA 56 PAGE</td>
</tr>
<tr>
<td>CONTACTS 58 PAGE</td>
</tr>
<tr>
<td>OUR APPEAL FOR TECHNOLOGICAL PARTNERS 16 PAGE</td>
</tr>
<tr>
<td>QUALITY MANAGEMENT SYSTEM 10 PAGE</td>
</tr>
<tr>
<td>CARE OF ENVIRONMENT 12 PAGE</td>
</tr>
<tr>
<td>SAFETY 14 PAGE</td>
</tr>
<tr>
<td>SOCIAL RESPONSIBILITY 15 PAGE</td>
</tr>
<tr>
<td>OUR PRODUCTS 18 PAGE</td>
</tr>
<tr>
<td>INNOVATIONS 38 PAGE</td>
</tr>
<tr>
<td>GEOGRAPHICAL PRESENCE 40 PAGE</td>
</tr>
<tr>
<td>MAJOR PROJECTS 42 PAGE</td>
</tr>
<tr>
<td>PEOPLE – THE HEART OF OZNA 56 PAGE</td>
</tr>
<tr>
<td>CONTACTS 58 PAGE</td>
</tr>
</tbody>
</table>

Contents

1. **CEO MESSAGE**
 - Page 4
2. **ABOUT THE COMPANY**
 - Page 6
3. **MANAGEMENT STRUCTURE**
 - Page 8
4. **QUALITY MANAGEMENT SYSTEM**
 - Page 10
5. **CARE OF ENVIRONMENT**
 - Page 12
6. **SAFETY**
 - Page 14
7. **SOCIAL RESPONSIBILITY**
 - Page 15
8. **OUR PRODUCTS**
 - Page 18
9. **INNOVATIONS**
 - Page 38
10. **GEOGRAPHICAL PRESENCE**
 - Page 40
11. **MAJOR PROJECTS**
 - Page 42
12. **PEOPLE – THE HEART OF OZNA**
 - Page 56
13. **CONTACTS**
 - Page 58

References

- CEO MESSAGE
- ABOUT THE COMPANY
- MANAGEMENT STRUCTURE
- QUALITY MANAGEMENT SYSTEM
- CARE OF ENVIRONMENT
- SAFETY
- SOCIAL RESPONSIBILITY
- OUR PRODUCTS
- INNOVATIONS
- GEOGRAPHICAL PRESENCE
- MAJOR PROJECTS
- PEOPLE – THE HEART OF OZNA
- CONTACTS
Dear colleagues and partners,

Today OZNA shows significant growth and aims to become a leading engineering and manufacturing company in Russian oil & gas industry. What do we mean by ‘leadership’? For us leadership is, above all, the ability to create personalized value proposition for each client which allows to increase assets profitability.

OZNA offers a range of solutions for oilfield surface development taking into account the cost of ownership of the existing equipment, construction expenses, costs of putting the field on production and risks arising during field development.

Our company has all the necessary resources to perform these tasks. OZNA actively expands its innovative solutions portfolio across all technologies including product development for implementation of the Import Substitution Program.

The company’s solutions portfolio created over more than sixty years’ experience, allows for realization of the most unconventional and ambitious targets in oilfields development.

At the same time the high proportion of Russian and localized components provide an opportunity to reduce capital expenditures for our clients.

In attempt to maximize value for our customers, we offer a range of business models which reduce risks of inefficient usage of surface equipment, speed up the process of putting oilfields into production mode and even make possible implementation of projects that are considered unprofitable.

OZNA is continuously introducing new production technologies and strives to improve quality of its products and service. Our highest reward is your confidence in us which creates stronger partnership relations.

Mikhail Kravtsov,
OZNA Group CEO
OZNA Company is a diversified production and engineering holding that occupies a steady position at Russian oil and gas market. Over more than 60 years’ experience, the enterprise has accumulated a great experience in execution of projects of various complexity levels.

Holding structure comprises eight companies, including three factories with total production floor area of 220,000 sq.m., an engineering division with 150 professional process and design engineers, a service company with a branch in Western Siberia, and a subsidiary in Kazakhstan.

OZNA Company employs an expansive portfolio of techniques, which technologies, allowing implementation of the whole range of tasks related to construction of process facilities for oilfield’s surface infrastructure development and oil & gas transportation structures. The large-scale own production and deeply integrated process cycle compliant with the world’s up-to-date quality standards makes it possible to carry out projects in shortest time and minimize customer’s risks while offering solutions at beneficial costs while offering cost-effective solutions.

The company’s own servicing subdivisions and subdivisions for process engineering and automation provide efficient implementation of the whole lifecycle for even most complicated projects. Profound technical evaluation in all the key spheres, partnership with the world technology leaders and introduction of the innovative technologies enable us to offer only the advanced solutions to the customers.

The long-time history, responsibility for our work and financial stability makes us a reliable partner for leading companies in Russian oil and gas industry. OZNA is actively developing and confidently faces the future. Nowadays, the Company development is focused on technologies and solutions in the spheres of gas and gas chemistry, offshore projects and entering the foreign markets.

PRODUCTION FACILITIES
- Forge and press production with capacity of 6,000 tons per year
- Steel casting production with capacity of 216 tons per year
- Welding production compliant with highest worldwide standards
- Vessels manufacturing
- 6 state-of-the-art paint-spraying chambers
- Company’s own design and production of power cabinets and automation
- 5 assembly shops with total area of 45,000 m², with cranes of capacity of up to 80 tons and over 250 blocks per year
- 4 flow loops and a multiphase standard gauge
- 452 machining units including state-of-the-art machining centers
- Pressure test bench with pressure range 0-630 MPa
- 3 X-ray weld test chambers
- Non-destructive examination laboratory – ultrasonic, radiographic, color dying and visual and measuring methods

OUR ADVANTAGES:
- We implement large-scale projects.
- Our own production and engineering provide for project implementation time decrease and risk minimization.
- We possess our own intellectual property developments and a vast experience in APCS implementation.
- We have access to advanced worldwide technologies due to our partnership with the world technology leaders.
- We possess a vast experience and competence in metrology.

3,700 persons
number of Employees

over 220,000 m²
total production area

11.2 bln. RUB (200M USD)
revenue in 2015

OZNA Company is a diversified production and engineering holding that occupies a steady position at Russian oil and gas market. Over more than 60 years’ experience, the enterprise has accumulated a great experience in execution of projects of various complexity levels.

Holding structure comprises eight companies, including three factories with total production floor area of 220,000 sq.m., an engineering division with 150 professional process and design engineers, a service company with a branch in Western Siberia, and a subsidiary in Kazakhstan.

OZNA Company employs an expansive portfolio of techniques, which technologies, allowing implementation of the whole range of tasks related to construction of process facilities for oilfield’s surface infrastructure development and oil & gas transportation structures. The large-scale own production and deeply integrated process cycle compliant with the world’s up-to-date quality standards makes it possible to carry out projects in shortest time and minimize customer’s risks while offering solutions at beneficial costs while offering cost-effective solutions.

The company’s own servicing subdivisions and subdivisions for process engineering and automation provide efficient implementation of the whole lifecycle for even most complicated projects. Profound technical evaluation in all the key spheres, partnership with the world technology leaders and introduction of the innovative technologies enable us to offer only the advanced solutions to the customers.

The long-time history, responsibility for our work and financial stability makes us a reliable partner for leading companies in Russian oil and gas industry. OZNA is actively developing and confidently faces the future. Nowadays, the Company development is focused on technologies and solutions in the spheres of gas and gas chemistry, offshore projects and entering the foreign markets.

PRODUCTION FACILITIES
- Forge and press production with capacity of 6,000 tons per year
- Steel casting production with capacity of 216 tons per year
- Welding production compliant with highest worldwide standards
- Vessels manufacturing
- 6 state-of-the-art paint-spraying chambers
- Company’s own design and production of power cabinets and automation
- 5 assembly shops with total area of 45,000 m², with cranes of capacity of up to 80 tons and over 250 blocks per year
- 4 flow loops and a multiphase standard gauge
- 452 machining units including state-of-the-art machining centers
- Pressure test bench with pressure range 0-630 MPa
- 3 X-ray weld test chambers
- Non-destructive examination laboratory – ultrasonic, radiographic, color dying and visual and measuring methods

OUR ADVANTAGES:
- We implement large-scale projects.
- Our own production and engineering provide for project implementation time decrease and risk minimization.
- We possess our own intellectual property developments and a vast experience in APCS implementation.
- We have access to advanced worldwide technologies due to our partnership with the world technology leaders.
- We possess a vast experience and competence in metrology.
MANAGEMENT STRUCTURE

OZNA-MANAGEMENT

MULTIPHASE METERING SYSTEMS
PUMPING & COMPRESSION
CHEMICALS INJECTION & HEATING
FISCAL & OPERATIONAL METERING
OIL, GAS & WATER TREATMENT
DRILLING SPARE PARTS
Our experience shows that quality is created on all stages of a project starting with conceptual engineering, choice of materials and components, manufacturing technologies and ending with special attention during commissioning.

Our path to quality is in continuous development. Following these principles allows us to be proud of achieved results.

Quality of OZNA projects complies with the most stringent standards, which was confirmed by the leading international companies, specializing in quality control and improvement, such as: Intertek, Engineering Bureau Franke International, etc.

All products and services are certified and licensed, complying with Russian and international industry standards.
Protection of our natural environment is vital to our success. We believe that it is important to preserve environmental balance, which is a foundation for health and wealth of the future generations. We strive to better understand and reduction both the direct and indirect impact that our practices may have on the environment.

In 2010 OZNA developed and successfully implemented the Environment Management System. We are reducing the negative influence on the environment both on design and manufacturing stages. In recent years OZNA has significantly reduced waste, dust, water and used paints discharge.
Ensuring the health and safety of our staff, clients and facilities is of the utmost OZNA priority. We are never satisfied with the status quo when it comes to safety, and are constantly working to improve our existing procedures and security systems. OZNA has taken great care to implement the very best international safety standards throughout its operations, to safeguard our people and property.

OZNA as a socially responsible company meets all its commitments.

In terms of philanthropic activity our company is focused on support of World War II veterans, disabled persons, childcare and educational institutions, healthcare organizations, sports clubs and carrying out local cultural and sport events.
Access to the oilfield market in Russia and the CIS

Active innovation activity in own R&D center

Readiness to trial test new technologies and co-invest in pilot projects

Option of joint promotion to the market

Engineering support of projects, including own trial manufacturing facilities

Support of field trials, start-up and technical maintenance in Russia and the CIS

Wide competences in the oil and gas industry and metering of oil and gas

Knowledge of industry and state standards in the oil and gas industry, supporting the certification processes in Russian and Central Asia
OUR PRODUCTS

- MULTIPORT FLOW SELECTOR (MPFS)
 - Page: 36

- CHEMICAL INJECTION UNIT
 - Page: 26

- WELLHEAD CHEMICAL INJECTION PACKAGES (WCIP)
 - Page: 28

- EARLY PRODUCTION MODULAR UNIT (EPMU)
 - Page: 22

- INHIBITOR INJECTION BLOCK (IIB)
 - Page: 34

- MODULAR CLUSTER PUMPING STATIONS (MCPS)
 - Page: 20

- MODULAR CLUSTER PUMPING STATION (MCPS)
 - Page: 30

- MOBILE CHEMICAL PREPARATION AND INJECTION UNIT (MCIU)
 - Page: 30
Modular Cluster Pumping Station (MCPS)

Purpose
OZNA Modular Cluster Pumping Stations (MCPS) are designed for fresh and formation water pumping to injection wells in order to maintain reservoir pressure and thereby stimulate production. OZNA MCPS are based on centrifugal, plunger or horizontal multistage centrifugal pumps. The design and production stages of each OZNA MCPS, including selection of technological equipment, instrumentation and process scheme, are carried out with consideration of pumped fluid parameters, required production capacity and flow, operating conditions and individual customer’s requirements. Upon customer’s request, OZNA MCPS may be executed as modular design or in an easily-erected building, made of metal structures and sandwich panels.

Minimal Footprint, Modern Solutions, High Efficiency
EARLY PRODUCTION MODULAR UNIT (EPMU)

OIL PRODUCTION ON EARLY STAGE OF FILED DEVELOPMENT

PURPOSE
The plants are intended for recovered product separation and automatic measurement for oil producing wells supplying either to field gathering system or to the autonomous system of oil (condensate) and water collection and associated gas disposal.

PLANT COMPOSITION:
• Oil and gas separator (OGS);
• Water separation sump (WSS);
• Measurement and adjustment block;
• Flare unit (FU);
• APCS system with control unit and MCC;
• Chemical injection pump (CIP) (optional);
• Oil/condensate buffer vessels (OBV) and water buffer vessels (WBV) with draw off pumps H-1,2 and loading system LS-1,2 (optional);
• Diesel power plant unit (optional).
DESCRIPTION
EPMU allows obtaining treated product during the period of initial (pilot) field development before the permanent gathering and treatment facilities has been designed, erected and commissioned.
EPMU provides real-time production data that can help estimate reservoir performance before long-term facilities installation. EPMU can be used for small reserves that would be financially risky or uneconomical to produce with a permanent production facility.

TECHNICAL CHARACTERISTICS
- Production capacity in terms of liquid: up to 1,000 m³/day (6500 bbl/d)
- Production capacity in terms of gas: up to 1,000,000 m³/day (35,000,000 scf/ft/day)
- Relative error of liquid flow weight measurement: maximum 1.5 % by weight
- Relative error of gas flow volume measurement: maximum 2.0 % by volume

OPERATION PRINCIPLE
The product may be delivered to EPMU either from a separate well or from a gathering manifold. Demulsifying agent can be fed into the pipeline by dosing pump as an option. The inlet cyclone device of the separator is designed to accept products with high initial gas content (up to 2,000 m³/m³) and can efficiently separate gas from liquid flow. The gas from OGS is transferred to the measuring unit and further to the flare unit (FU) or to the field gas gathering system. The liquid phase from OGS flows into the water separation tank WSS to be separated into oil (condensate) and water and is further delivered via measuring units into the gathering system. In case no gathering system designed, EPMU can be equipped with oil/condensate buffer vessels (OBV) and water buffer vessels (WBV) with tank trucks loading system LS-1,2.

OGS TYPE RANGE

<table>
<thead>
<tr>
<th>OGS TYPE (volume)</th>
<th>Equipment unit production capacity, m³/day (bbl/d)</th>
<th>LOW-DENSITY OILS</th>
<th>MIDDLE OILS</th>
<th>HIGH-DENSITY OILS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average separation time 5 minutes</td>
<td>Average separation time 10 minutes</td>
<td>Average separation time 20 minutes</td>
<td></td>
</tr>
<tr>
<td>OGS-1.6</td>
<td>300 (2,000)</td>
<td>150 (1,000)</td>
<td>100 (650)</td>
<td></td>
</tr>
<tr>
<td>OGS-4</td>
<td>600 (4,000)</td>
<td>350 (2,275)</td>
<td>150 (1,000)</td>
<td></td>
</tr>
<tr>
<td>OGS-6,3</td>
<td>1000 (6,500)</td>
<td>500 (3,250)</td>
<td>300 (2,000)</td>
<td></td>
</tr>
</tbody>
</table>

WSS TYPE RANGE

<table>
<thead>
<tr>
<th>WSS TYPE (volume)</th>
<th>Equipment unit production capacity, m³/day (bbl/d)</th>
<th>LOW-DENSITY OILS</th>
<th>MIDDLE OILS</th>
<th>HIGH-DENSITY OILS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average separation time 20 minutes</td>
<td>Average separation time 40 minutes</td>
<td>Average separation time 60 minutes</td>
<td></td>
</tr>
<tr>
<td>WSS-4</td>
<td>300 (2,000)</td>
<td>150 (1,000)</td>
<td>100 (650)</td>
<td></td>
</tr>
<tr>
<td>WSS-6,3</td>
<td>600 (4,000)</td>
<td>350 (2,275)</td>
<td>150 (1,000)</td>
<td></td>
</tr>
<tr>
<td>WSS-12,5</td>
<td>1000 (6,500)</td>
<td>500 (3,250)</td>
<td>300 (2,000)</td>
<td></td>
</tr>
</tbody>
</table>

Design pressure of devices 0.6; 1.0; 1.6; 2.5; 4.0; 6.3 MPa and more
CHEMICAL INJECTION UNIT

THE RELIABILITY AND ACCURACY OF CHEMICAL DOSING

PURPOSE
Chemical injection unit are intended for measured input of liquid demulsifying agents, corrosion inhibitors, scale inhibitors, paraffin inhibitors, etc. into the pipeline of the field system of oil and gas transportation and treatment and oil and gas wells for the purpose of oil demulsifying in the pipelines and protection of the pipelines and equipment from corrosion, scale or paraffin buildup, hydrate formation, etc.

PACKAGE DESIGN FEATURES AND STRUCTURE
All the CIP equipment is located in a winterized block with a frame-type basement. Three-ply steel panels of sandwich type are used as enclosing structures of the block. The panels thickness is selected depending on the climatic version and in accordance with the thermal design.

BASIC COMPONENTS:
- process tank intended for chemical reagents backlog storage, heating and temperature maintaining
- service tank (installed upon additional request of the customer) intended for measurement of the daily reagent consumption;
- injection pump, for tank filling with process reagent and provision for reagent circulation in the tank;
- metering pump, for measured supply of the chemical reagent to the object treated;
- set of pump connection piping with shutoff, control and safety valves and instrumentation;
- heating system providing for optimal temperature maintenance inside the block for operation of the equipment and maintenance personnel;
- lighting system;
- ventilation system;
- control system (cabinet).
WELLHEAD CHEMICAL INJECTION PACKAGES (WCIP)

PACKAGE DESIGN FEATURES AND STRUCTURE
The main equipment of the unit is located in metal housing container. Depending on climatic conditions, production of winterized housing containers is possible.

WCIP CONTAINS
- metering pump;
- process tank with level sensor;
- fine filter;
- visual level indicator;
- connection piping with electric contact pressure gauge;
- explosion-proof version of control system (cabinet).

The tank, parts and assemblies contacting with the reagent are corrosion-resistant versions (stainless steel).

In case of additional request, the unit may be completed with the pipeline and the assembly for reagent injection in the borehole.

VERSION 1 – WCIP consisting of two separate section blocks installed on a single frame. The process section block with explosion-proof electric devices and instrument section with devices of conventional industrial variations. WCIP is intended for installation outside the explosion-hazardous zone.

VERSION 2 – WCIP comprised of the process block with control cabinets and power equipment of explosion-proof variation, located in one room. WCIP is intended for installation inside the explosion-hazardous zone.

BASIC TECHNICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>PARAMETER VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump capacity</td>
<td>0.005-6.6 gal/h*</td>
</tr>
<tr>
<td>Number of pumps</td>
<td>1 pc.*</td>
</tr>
<tr>
<td>Suction pressure</td>
<td>1.45-7.25 psi</td>
</tr>
<tr>
<td>Discharge pressure</td>
<td>14.5-10,000 psi</td>
</tr>
<tr>
<td>Rated power</td>
<td>up to 5 kW</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>380 V</td>
</tr>
<tr>
<td>Tolerable rated voltage deviation</td>
<td>minus 10 to plus 10 %</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Current type</td>
<td>Alternating, three phase</td>
</tr>
<tr>
<td>Pumped medium</td>
<td>Chemical reagents</td>
</tr>
<tr>
<td>Block temperature</td>
<td>not lower than 41°F</td>
</tr>
<tr>
<td>Pumped medium temperature</td>
<td>-58 to 158 °F</td>
</tr>
<tr>
<td>Maximum overall dimensions</td>
<td>40 x 40 x 63 inch*</td>
</tr>
<tr>
<td>(length × width × height)</td>
<td></td>
</tr>
<tr>
<td>Service life of surface facility blocks (without additional customer’s requests)</td>
<td>10 years minimum</td>
</tr>
</tbody>
</table>

* Upon customer’s request, it is possible to produce blocks with individual technical characteristics and design.
MOBILE CHEMICAL PREPARATION AND INJECTION UNIT (MCIU)

PURPOSE
Mobile chemical preparation and injection unit (MCIU) is intended for at-site preparation of compositions of liquid and powdery components, injected into oil-bearing formations in order to enhance oil recovery.

UNIT COMPONENTS
MCIU is comprised of two sections mounted on a single frame in a single enclosure and separated with a tight partition. The control equipment is installed in the instrumentation section and is a conventional version.

MCIU is supplied in assembled condition on the carrier of a tractor trailer.

THE DELIVERY SET INCLUDES:
disassembled platform stowed in the box located at the bottom of the trailer;
• lifting jacks – 4 pcs.;
• wooden pads to install under the jacks – 4 pcs.;
• floodlights – 4 pcs.

TECHNOLOGY
MCIU provides for preparation of compositions of liquid and powdery components using 11 techniques and conducts programmable injection of the reagent:
• gel-forming compounds based on sodium silicate (GFC, VP, etc.);
• cross-linked polymeric compounds based on polyacrylamide (CLPC, etc.);
• silica flour compounds (SFC, etc.);
• highly viscous emulsions (HVE, etc.);
• gel-forming, thermotropic compounds (GFC «Galka», »Thermogel»).

The process equipment is located in a winterized block with a tight frame basement. The block enclosing structure is formed by three-ply steel panels with thermal insulation based on «URSA»M with flame arresting additives.

ADVANTAGES OF MCIU
• MCIU ensures high accuracy of reagent dispersion in water, quick preparation and accurate metering of the reagents;
• polymeric solution concentration and flow may be altered in accordance with the technical procedure;
• MCIU can operate in manual and automatic modes;
• the control is conducted from MCIU control cabinet;
• complete mixing of the components and completed chemical reaction in a short time period;
• MCIU ensures observance of the occupational safety requirements;
• reliable operation, easy maintenance, high working efficiency.
BASIC TECHNICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production capacity of filling line, in terms of water</td>
<td>maximum 15 m³/h (94 bbl/h)</td>
</tr>
<tr>
<td>Effective volume of two mixing tanks with bypass line valve open</td>
<td>maximum 6 m³ (37 bbl)</td>
</tr>
<tr>
<td>Number of sections in water mixing tank</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Operating pressure in filling pipeline</td>
<td>1.6 MPa (232 psi)</td>
</tr>
<tr>
<td>Operating pressure of centrifugal pump</td>
<td>0.1–0.16 MPa (14.5 psi – 23.2 psi)</td>
</tr>
<tr>
<td>Production capacity of centrifugal pump</td>
<td>up to 40 m³/h (251 bbl/h)</td>
</tr>
<tr>
<td>Metering pump 250/16 Production capacity of metering pump</td>
<td>250 l/hour (1.57 bbl/h)</td>
</tr>
<tr>
<td>Metering pump 400/16 Production capacity of metering pump</td>
<td>400 l/hour (2.52 bbl/h)</td>
</tr>
<tr>
<td>Metering pump 2500/10 Production capacity of metering pump</td>
<td>2,500 l/hour (15.7 bbl/h)</td>
</tr>
<tr>
<td>Operating pressure of metering pump</td>
<td>10 MPa (1450 psi)</td>
</tr>
<tr>
<td>Viscosity of metered medium at 68°F</td>
<td>maximum 100 mm²/s (100 cSt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature of metered medium</td>
<td>5 to 40°C (41 to 104°F)</td>
</tr>
<tr>
<td>Maximum density of metered medium</td>
<td>1.000 kg/m³ (8.34 ppg)</td>
</tr>
<tr>
<td>Number of chemical reagents service tanks</td>
<td>3 pcs.</td>
</tr>
<tr>
<td>Volume of chemical reagent service tank</td>
<td>0.2 m³ (1.26 bbl)</td>
</tr>
<tr>
<td>Screw doser</td>
<td>2 pcs.</td>
</tr>
<tr>
<td>Production capacity of doser in terms of powdery polyacrylamide</td>
<td>3–100 kg/h (6.6 – 220.5 lbs/h)</td>
</tr>
<tr>
<td>Volume of screw doser hopper</td>
<td>90 liters (23.8 gal)</td>
</tr>
<tr>
<td>Installed capacity</td>
<td>maximum 40 kW</td>
</tr>
<tr>
<td>Voltage</td>
<td>380 V</td>
</tr>
<tr>
<td>Current type</td>
<td>Alternating, three phase</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Continuous, with permanent attendance of servicing personnel</td>
</tr>
</tbody>
</table>
INHIBITOR INJECTION BLOCK (IIB)

Purpose
The block is a component of the system of inhibitor injection in gas collection pipelines of gas fields and in process equipment, and may be also used as a separate item. The block may be included in APCS of gas production as an executive unit to provide injection of a preset inhibitor flow amount in the course of boreholes operation at development fields. The block is intended for manual or remote adjustment of hydrate inhibitor flow.

Technology
IIB equipment is installed in a winterized metal cabinet (protective housing).

Operating Principle
Depending on the customer’s requirements, the block may comprise the following equipment: flow regulator with electric drive, flow meter, control system, needle valve, filter, check valve, temperature and pressure sensors, pressure gauges, thermal shields for instrumentation.

The block may be completed with injectors for inhibitor supply into the pipeline.

ADVANTAGES:
• rated pressure of IIB is 25 MPa;
• inhibitor injection blocks may be produced as climatic versions for moderately cold or cold climate conditions;
• temperature of transported medium is –60°C (-76°F) to 50°C (122°F);
• all the equipment installed in the block is explosion-proof versions;
• overall dimensions are minimized due to employment of shutoff and control valves with pipe fittings;
• hydraulic end is implemented of 316L and 12Х18Н10Т steel grades, which enhances reliability of the article;
• competitive price;
• to ensure instrumentation operation in low-temperature conditions, heat resistant thermal shields with electric heating are used;
• the control system enables reagent flow measurement and proportional adjustment.

Flow is measured with a flow meter and the signal is transmitted to PLC (programmable logic controller). In case of preventative maintenance works with the flow regulator, inhibitor may be injected via bypass line that comprises the needle valve. It is possible to adjust the inhibitor flow rate by means of the flow meter and the needle valve.

Parameters

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>PARAMETER VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate, l/hour</td>
<td>2-240 (0.5-63.4 gal/h)</td>
</tr>
<tr>
<td>Rated pressure of working medium at pump output, MPa</td>
<td>3,620 psi</td>
</tr>
<tr>
<td>Power voltage, alternating, three-phase, V</td>
<td>220</td>
</tr>
<tr>
<td>Frequency, Hz</td>
<td>50</td>
</tr>
<tr>
<td>Maximum power consumption, kW, not more than</td>
<td>1.0</td>
</tr>
<tr>
<td>Overall dimensions, mm, not more than</td>
<td>1,100´650´650 (4325.525.5 inch)</td>
</tr>
<tr>
<td>Block weight, kg</td>
<td>90 (198 lbs)</td>
</tr>
<tr>
<td>Temperature limits,°C (°F)</td>
<td>-60 to 40 (-76 to 104)</td>
</tr>
<tr>
<td>Mean time between failures, h</td>
<td>10,000</td>
</tr>
<tr>
<td>Service life, years</td>
<td>10</td>
</tr>
</tbody>
</table>
MPFS is intended for use as a switching manifold in measuring rigs at oil production facilities.

MPFS provides for sequential yield measurement in several boreholes. The equipment structure, depending on the modification, employs 8, 10 or 14 connection lines that allow the mixed liquids to flow through the output into the common manifold, with simultaneous isolation of any particular borehole. The equipment helps to reduce the costs of measuring rigs operation, repair and maintenance.

SPECIFICATIONS:
- Working pressure, MPa, depending on modification, maximum: 580 or 913 psi
- Position sensor power supply, V: 24
- Current type: direct
- Maximum pressure drop between the measuring and general pipelines, MPa, depending on modification, maximum: 17.4 or 145
- Position sensor version: explosion-proof (explosion protection marking IExdIIAT3)
- Rated values of climatic parameters shall correspond to the ambient temperature: -10 °C to 45 °C (14 °F to 113 °F)
- Category У3,1: indoor areas.
- Number of boreholes connected, depending on modification: 8, 10 or 14
- Overall dimensions, mm, maximum: diameter 570 (22.5 inch), height 908 (35.7 inch)

ADVANTAGES:
- Automatic control by means of hydraulic drive
- Reduction of mounting, operation and maintenance costs
- More compact structure compared to conventional double- or triple-stream manifolds
- Reduced number of shutoff valves in operational and measuring manifolds may be used
OZNA is one of key players in Russia and CIS oil and gas industry. We value innovative solutions as our main competitive advantage and as a basis of our future success. Therefore only highly-qualified personnel is employed to create innovative, price-effective and proficient solutions oftenly exceeding client’s expectations.

Partnerships with the worldwide technological leaders and high level of competence of our technical specialists allow OZNA to implement innovations in all activity areas of the company. Analyzing client’s needs and monitoring most up-to-date worldwide breakthroughs, we provide modern innovative and effective solutions.

INNOVATIONS:
1. Multiphase well flow metering systems without separation. ADVANTAGES: reliable metering data in severe conditions
2. Energy Consumption Metering System ADVANTAGES: reduced energy consumption and improved efficiency
3. H2S removal unit ADVANTAGES: lower OPEX and more compact
<table>
<thead>
<tr>
<th>Major Projects</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metering Station, Pumping Station, and Other Infrastructure</td>
<td>44</td>
</tr>
<tr>
<td>High-Performance Export Fiscal Metering Units</td>
<td>50</td>
</tr>
<tr>
<td>High-Performance Test-Separators, Chemical Injection, and Other Infrastructure</td>
<td>46</td>
</tr>
<tr>
<td>Fiscal Metering</td>
<td>52</td>
</tr>
<tr>
<td>Oil-Trunk Pipeline, Pumping Station, and Production Metering</td>
<td>48</td>
</tr>
<tr>
<td>Oil and Gas Treatment, and SCADA</td>
<td>54</td>
</tr>
</tbody>
</table>
METERING STATION, PUMPING STATION AND OTHER INFRASTRUCTURE
LOCATION: WEST SIBERIA, RUSSIA
CLIENT: ROSNEFT

PROJECT: One of the biggest oil fields of the Western Siberia. Pioneering requirements for level of automation, reliability, precision and commissioning terms. New scheme of well flowlines routing was used, with switching valves placed at well heads. Amount of wells reaching 20 and more at one well pad.

SCOPE: Development of new and prospective equipment specifically for Priobskoe field: manufacturing, supply, assembly, start-up, warranty and service maintenance services.

SUPPLIED PRODUCTS: Well switch valve units for oil gathering (over 1,000 sets); test separators OZNA-Impulse, OZNA-Massomer rated 400 and 1,500 tons per day (over 1,000 sets), modular water injection stations (25 units) and stations with horizontal screw pumps, oil pumping stations, oil gathering stations, water transport stations, chemical injection packages and water distribution manifolds, allocation and fiscal metering systems, etc.
HIGH-Performance TEST-SEPARATORS, CHEMICAL INJECTION AND OTHER INFRASTRUCTURE
LOCATION: TIMANO-PECHORA REGION, RUSSIA
CLIENT: CONOCOPHILLIPS AND LUKOIL

PROJECT: First Russian large scale project for development of carbonate reservoirs, which had anomaly high design well flow rates, sand production, high requirements for automation and smart functions support (self-diagnostics support). Requirements to equipment were set jointly with ConocoPhillips.

SCOPE: Development and manufacturing of upgraded and adapted products for the Far North conditions: supply, assembly, start-up, process control system implementation.

SUPPLIED: Test separators OZNA-Massomer (rated 3,000 tons per day), chemical injection packages, water injection stations, water distribution manifolds, oil residue pumping station.
Locating test separators and chemical injection packages on the well pads allowed creating a single system for well operation. Chemical demand is calculated real-time. Daily chemical consumption values are registered and transmitted using the SCADA system.
Market experts have pointed out that nearly all the leading solutions for the Vankor oilfield were supplied by OZNA.
HIGH-PERFORMANCE EXPORT FISCAL METERING UNITS
LOCATION: BALTIC SEA COAST, RUSSIA
CLIENT: TRANSNEFT

PROJECT: Largest commercial port of Russia being a major export window for oil and oil products to the European market. The project was unprecedented in terms of construction time terms of such large-scale facility.

SCOPE: Engineering, procurement, manufacturing, supply, supervision assembly and start-up with further commissioning of fiscal metering systems.

SUPPLIED EQUIPMENT: 4 large oil fiscal metering systems with quality lines, volume lines and a stationary prover (manufactured in the USA), control systems and software (control cabinet, controllers, operator workbenches), interconnecting equipment, pressure regulation units and full set of maintenance equipment.
FISCAL METERING
LOCATION: CASPIAN REGION, RUSSIA

CLIENT: CASPIAN PIPELINE CONSORTIUM

PROJECT: The project was specific in compliance with international standards in quality, ergonomics and reliability.

SCOPE: Development of technical specification, preparing design documents, development of Data Processing System, manufacturing and supply of fiscal metering systems.

SUPPLIED EQUIPMENT: From January to April 2012 OZNA supplied the fiscal metering systems. In April-May client’s representatives fulfilled acceptance of four fiscal metering systems for CPC-Kazakhstan (Oil Pumping Stations Tengiz and Atyrau), two oil fiscal metering systems for CPC-Russia (OPS Astrakhan, Komsomolsk), and volume line for OPS Kropotkin.
OIL AND GAS TREATMENT AND SCADA

LOCATION: TIMANO-PECHORA REGION, RUSSIA

CLIENT: ALLIANCE OIL COMPANY

PROJECT: The project was specific in complex conditions of the Timano-Pechora region in view of logistics and presupposed the use of the latest technologies in the oil and gas industry.

SCOPE: Development of technical specification, preparing and agreement of the design documentation, coordination of subcontractors, manufacturing, supply, start-up of equipment for Oil Treatment Plant, development of the process control system.

SUPPLIED EQUIPMENT: Oil Treatment Plant includes a range of equipment for field treatment of crude oil: 3-phase oil and gas separators with increased capacity and specialty internals, electric dehydrators developed jointly with Aker Solutions, preliminary gas knock-out tube-type device, separation vessels, oil heaters, flare system, modular pumping stations, fiscal (and allocation) oil metering system, etc.

In the project OZNA acquired the experience of large-scale project management, new competences in oilfield equipment, procurement services with strict terms and hardly accessible regions of the Far North.
People – are a valuable capital in the modern business world. In a highly technological company, competent employees form the basis of its value.

OZNA has created conditions for development of all employees in professional and personal aspects. We understand that competences are not in technologies and equipment, but in people. Our company is not just a working machine, but a friendly and united team of common thinkers with same goals.

For professional training of employees OZNA has been running its own Training Center for over 10 years now. Jointly with the leading business schools we are implementing training programs for management and developing cooperation by taking internships and training in the leading global companies.

We are making all the efforts to be the most attractive company in the industry for high class, talented specialists, and we understand that the company will not develop without developing its people.
CONTACTS

OZNA Group CEO
Mr. Mikhail Kravtsov
Mendeleev St., 205a
Ufa, 450071, Russia
Tel: +7 (347) 292–77–52
Fax: +7 (347) 292–77–53
ozna-mnt@ozna.ru

This USB drive has detailed information on business areas of the company in electronic form.